1 Isolation techniques

Follow the sample collection protocols below for any environmental sample from which you hope to isolate photosynthetic microbes. Whenever possible, the plate-spreading method is the preferred strategy to isolate clean monocultures.

1.1 Plate-spreading isolation method

- Agar medium is prepared with 1-1.5 % agar in 1 L of the suitable algal cultivation medium (TAP, BG-11, F/2 and/or Zarrouk), media is autoclaved to melt agar and make sterile, if an alga is sensitive, agar can be autoclaved separately and mixed with sterilized liquid culture medium. Molten agar-media are poured into sterilized Petri dishes.
- 2. For samples which already indicate the presence of microalgae (by green or other coloration), dilute 30-50 μ L of the sample into 700 μ l of respective medium and spread onto agar plate. The greener the medium, the less you will spread;
- 3. Spread the sample evenly over the surface of agar using the L-shaped spreader and let dry;
- Incubate under low moderate lights (24h of light) at ~25-30°C for at least 4-7 d and if possible, 1-3% CO₂ in air supplementation. Spread plates will have a countable number of colonies evenly distributed, some with different phenotype if mixed starting culture was present.
- 5. It is important to pick only single colonies from the plates and then place these in individual wells of a 24- well culture plate with 1.5 mL of respective culture medium.
 *You can also use a 96- well plate with 0.2 mL of culture medium.;
- Incubate under low-moderate lights (24h of light) at ~25°C for at least 7 days, with agitation and if possible, 1-3% CO₂ in air supplementation.
- 7. After this, drop a sample of each well on a glass slide to check microscopically if you have algal monoculture.
- If you have monocultures, you can "scale up" the sample from each well to 6 well plates and then transfer it into larger flasks or filter-cap Tissue Culture (TC) bottles to maintain your monoculture in liquid.
- 9. A further backup is made by concentrating the culture (either by centrifugation or pipetting) and spreading it on an agar slant which is maintained in low-light.

10. Liquid cultures in TC flasks and agar slants can be let in low-light conditions usually for a month before refreshing.

1.2 Serial dilution

- Pre label 10X 15 mL tubes 10⁻¹-10⁻¹⁰ to indicate dilution factor, fill 9 mL of target algal liquid medium into each;
- 2. For samples that visibly contain algae (green coloring), aseptically pipette 1 mL of enrichment sample to the test tube (10⁻¹) and mix gently to make a 1/10 dilution. This procedure is repeated for the remaining tubes to enact the serial dilution (10⁻²–10⁻¹⁰), *15 mL centrifuge tubes work, however glass can prevent adhesion to vessel walls.
- Incubate all tubes under low moderate lights (24h of light) at ~25°C for at least 7 d, under gentle agitation and if possible, 1-3% CO₂ in air supplementation.
- Examine cultures within tubes microscopically after the incubation period. A monoculture culture may grow in one of the tubes with higher-dilution (10⁻⁶-10⁻¹⁰);
 *If the tubes contain two or three different species, then micromanipulation or dilution plating can be used to obtain monocultures.
- 5. If you have monocultures, you can "scale up" the sample from each well to 6 well plates and then transfer it into larger flasks or filter-cap Tissue Culture (TC) bottles to maintain your monoculture in liquid.
- 6. A further backup is made by concentrating the culture (either by centrifugation or pipetting) and spreading it on an agar slant which is maintained in low-light.
- 7. Liquid cultures in TC flasks and agar slants can be let in low-light conditions usually for a month before refreshing.

1.3 Micromanipulation

- A micromanipulation pipette is made by heating on flame and pulling a glass capillary tube out from both ends. The point of the tip should be at least twice the diameter of the cell to be manipulated;
- 2. For samples that visibly contain algae (green coloring), while viewing the sample under a microscope, suck individual cell(s) into the micropipette. Transfer the cell to a drop of sterile

medium on a glass slide, wash or sterilize the micropipette in flame or with ethanol and rinse with medium, picked the cell from the drop and repeat in a new drop. This process is aimed to "wash" the cell from bacteria;

*The more times a cell is washed, the less likely is bacterial contamination. However, the risk of cell damage increases with the number of times a cell is handled.

- 3. Then transfer the cell to a 24-well plate or the surface of an agar plate of appropriate medium;
- 4. Incubate under low moderate lights (24h of light) at ~25°C for at least 7 days with low lights preferred until the cell can establish itself and replicate in its new medium. Gentle agitation can be used for the liquid samples and if possible, 1-3% CO₂ in air supplementation for both agar plates and liquid cultures.
- 5. If you have monocultures, you can "scale up" the sample from each well to 6 well plates and then transfer it into larger flasks or filter-cap Tissue Culture (TC) bottles to maintain your monoculture in liquid.
- 6. A further backup is made by concentrating the culture (either by centrifugation or pipetting) and spreading it on an agar slant which is maintained in low-light.
- 7. Liquid cultures in TC flasks and Agar slants can be let in low-light conditions usually for a month before refreshing.

2 Media recipes General Solutions

TAP – Medium

Components	1 L	2 L	3 L	4 L	5 L
TRIS	2,42 g	4,84 g	7,26 g	9,68 g	12,1 g
TAP-Salts	25 ml	50 ml	75 ml	100 ml	125 ml
p-Solution	0.375 ml	0.75 ml	1.125 ml	1.5 ml	1.875 ml
Hutner's trace	Each	Each	Each	Each	Each
	solution:1	solution:2ml	solution:3	solution:4	solution:5
	ml		ml	ml	ml
Acetic Acid	1 ml	2ml	3 ml	4 ml	5 ml
(100%)					

pH to 7,0 with HCl

<u> TAP-Medium (–Sulfur, –S)</u>

All components are the same as regular TAP, but ATTENTION (!!!) for sulfur free medium (-S) The following solution must be substituted: **TAP salts** (<u>-</u>S)* and for the **Hutner's trace solutions, use ZnCl**₂ (instead of ZnSO₄).

TAP Salts solution (1L)

16 g	NH ₄ CI
4g	MgSO ₄ x 7 H ₂ O
2g	CaCl ₂ x 2 H ₂ O

*TAP- Salts (-S) (1 L)

- 16 g NH₄Cl 3.3 g MgCl₂ x 6 H₂O
- $2g C \quad aCl_2 x 2 H_2O$

TAP(-N) Salts solution (1L)

- 20.9 g KCl
- 4g MgSO₄ x 7 H₂O
- $2g \qquad CaCl_2 x 2 H_2O$

TAP (NO₃ - Nitrate) Salts solution (1L)

- 23.8 g NaNO₃ 4g MgSO₄ x 7 H₂O
- 2g CaCl₂ x 2 H₂O

Phosphate-solution for TAP- Medium (aka P-solution) (100 ml)

14,8 g KH₂PO₄ 28,8 g K₂HPO₄

Living Library of Algae from the KSA

Hutner's trace- Pre-Solutions

 Stock solution 1: 125mM EDTA- Na2

 13,959 g
 EDTA- Na2
 in 300 ml

 (pH to 8,0 with KOH)

Stock solution 2: 285µM (NH4)6MO7O240,088 g(NH4)6MO7O24 in 250 ml

 Stock solution 3:
 1mM Na₂SeO₃

 0,043 g
 Na₂SeO₃
 in 250 ml

Hutner's trace- Solutions

1. EDTA – Na₂

20 ml Stock solution 1: fill to 100 ml with ddH_2O

2. (NH₄)₆MO₇O₂₄
10 ml Stock solution 2: fill to 100 ml with ddH₂O

3. Na2SeO₃

10 ml Stock solution 3: fill to 100 ml with ddH₂O

4. Zn · EDTA

0,072 g $ZnSO_4 \cdot 7H_2O$ + 2,2 ml **Stock solution 1**: fill to 100 ml with ddH₂O **For TAP- S** 0,017 g **ZnCl**₂ + 1,1 ml **Stock solution 1**: fill to 100 ml with ddH₂O

5. Mn · EDTA

 $0,1188 \text{ g } \text{MnCl}_2 \cdot 4\text{H}_2\text{O} + 4,8 \text{ ml}$ **Stock solution 1**: fill to 100 ml with ddH₂O

6. Fe · EDTA

0,82 g EDTA-Na₂ (Not from Stock Solution 1!!) + 0,232 g Na₂CO₃ mix into water and add: + 0,54 g FeCl₃ \cdot 6H₂O and fill to 100 ml with ddH₂O

7. Cu · EDTA

0,034 g CuCl₂ + 1,6 ml **Stock solution 1**: fill to 100 ml with ddH_2O

HSM- Medium (1 L)

50 ml Beijernick's Solution + 1 ml from each of the 7 Huntner's trace solutions Fill to 975 mL with ddH₂O ph to 6.8 Autoclave After cooling, add 25 ml HSM P-solution (below) sterile.

Phosphate-solution for HS-Medium (HSM) (1 L) (HSM P-solution)

29,6 g KH₂PO₄ 57,6 g K₂HPO₄

Beijernick's solution (1 L) 10 g NH₄Cl

Solutions	Chemical Composition	Amount (g.L ⁻¹)
Stock 1	Ferric ammonium citrate	0.6
	Citric Acid	0.6
	CaCl ₂ . 2 H ₂ O	3.6
Stock 2	MgSO ₄ .7 H ₂ O	7.5
Stock 3	K ₂ HPO ₄ . 3 H ₂ O or K ₂ HPO ₄	4.0 or 3.05
Stock 4	NaNO ₃	100
Stock 5	H ₃ BO ₃	2.86
	MnCl ₂ . 4 H ₂ O	1.81
	ZnSO ₄ . 7H ₂ O	0.222
	CuSO ₄ . 5H ₂ O	0.079
	COCI ₂ . 6H ₂ O	0.050
	NaMoO ₄ . 2H ₂ O or MoO ₄ (85%)	0.391 or 0.018

<u>BG-11</u>	
1	Stock Solution

All stock solutions must be sterile filtered or autoclaved.

2. For basic BG11 medium combine the following stock solutions

Solutions	Per liter to be prepare
Stock 1	10 mL
Stock 2	10 mL
Stock 3	10 mL
Stock 4	10 mL
Stock 5	1 mL
Na ₂ CO ₃	0.02 g

Combine all stock solutions and fill until 1 L with fresh water and adjust pH to 7.5 (use 1M HCI);

After autoclaving and cooling the pH is about 7.1.; For solid media add 1.5% agar.

Guillard's (F/2) medium

Guillard's (F/2) Marine Water Enrichment Solution - Sigma Aldrich Seawater (Red Sea Water)

Living Library of Algae from the KSA

3 References

Guillard RRL & Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervaceae (Cleve) Gran. Can. J. Microbiol. 8: 229-239.

Rippka, R., J. Deruelles, J. Waterbury, M. Herdman and R. Stanier. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111: 1-61.

Zarrouk C. University of Paris; France: 1966. Contribution a l'edtude d'une cyanobacterie: Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima (Setchell et Gardner) Geitler. PhD thesis.